Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | |-------------------|--|---------------------|--|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY 0620/41 Paper 4 Theory (Extended) October/November 2020 1 hour 15 minutes You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. This document has 20 pages. Blank pages are indicated. IB20 11_0620_41/2RP © UCLES 2020 [Turn over 1 (a) This question is about elements. | aluminium | |-----------| | carbon | | iron | | hydrogen | | oxygen | | silicon | | sodium | | sulfur | Answer the following questions about these elements. Each element may be used once, more than once or not at all. | (i) | Name the element that can be used as a fuel. | | |-------|---|-----| | | | [1] | | (ii) | Name the element that forms an oxide with a similar structure to diamond. | [1] | | (iii) | Name the element that forms an amphoteric oxide. | | | | | [1] | | (iv) | Name the element that has oxidation states of +2 and +3. | | | | | [1] | | (v) | Name the element extracted from bauxite. | | | | | [1] | | (vi) | Name the element that has atoms with the electronic structure 2,6. | | | | | F41 | | (b) | Iror | rusts when it is in contact with oxygen and water. | |-----|------|--| | | (i) | Explain how sacrificial protection prevents rusting. | | | | | | | | | | | | | | | | [2] | | | (ii) | State one other method of rust prevention. | | | | [1] | | | | [Total: 9] | | ZINC IS | extracted from an ore containing zinc suifide. | | |------------------|---|-----| | (a) Sta | ate the name of this zinc ore. | | | | | [1] | | | | | | (b) Thi | is ore is converted to zinc oxide, ZnO. | | | Zin | nc oxide is then reacted with carbon. | | | (i) | Write a chemical equation for the reaction of zinc oxide with carbon. | | | | | [1] | | (ii) | State what type of chemical change happens to the zinc in zinc oxide in this reaction. | | | | Explain your answer. | | | | chemical change | | | | explanation | | | | | | | | | | | | | [2] | | (iii) | Explain why aluminium is not extracted from aluminium oxide by heating with carbon | | | | | | | | | [1] | | (iv) | Suggest an alternative method for the extraction of zinc from zinc oxide. | | | | | [1] | | | | | | (c) Bra | ass is an alloy of zinc. | | | Ex | plain, in terms of particles, why brass is harder than pure zinc. | [3] | [Total: 9] | (a) | Aqu | eous ammonium sulfate, (NH ₄) ₂ SO ₄ , is warmed with aqueous sodium hydroxide. | | |-----|-------|---|------------| | | The | pungent-smelling gas ammonia, NH ₃ , is produced. | | | | Bala | ance the equation for this reaction. | | | | | $(NH_4)_2SO_4 +NaOH \rightarrowNH_3 +H_2O + Na_2SO_4$ [1 |] | | (b) | A 2. | 8g sample of impure ammonium sulfate is found to contain 0.7g of impurities. | | | | Cal | culate the percentage of ammonium sulfate in this sample. | | | | | | | | | | percentage of ammonium sulfate = % [1 |] | | (c) | Des | scribe a test for ammonia gas. | | | | test | | | | | resi | ılt[2 | | | | | L ² | -1 | | (d) | Amı | monia gas is prepared at the front of a laboratory. | | | | The | pungent smell of ammonia spreads throughout the laboratory slowly. | | | | (i) | Name the process that occurs when ammonia gas spreads throughout the laboratory. | | | | | [1 | 1] | | | (ii) | Explain, using ideas about particles, why ammonia gas spreads throughout the laboratory | / . | | | | | | | | | | | | | | | | | | | [2 | 2] | | (| (iii) | Explain why carbon dioxide gas, ${\rm CO_2}$, will spread throughout the laboratory at a slower attention and the same rate than ammonia gas, ${\rm NH_3}$. | r | | | | | | 3 (e) Ammonia is produced in the Haber process. The equation for the reaction is shown. (ii) Suggest the pH of aqueous ammonia. $$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$ (i) In the Haber process, a temperature of 450 °C and a pressure of 200 atmospheres are used in the presence of finely-divided iron. A larger equilibrium yield of ammonia would be produced if a lower temperature and a higher pressure are used. Explain why a lower temperature and a higher pressure are **not** used. | | | lower temperature | | |-----|------|---|-----| | | | | | | | | higher pressure | | | | | | | | | | | [2] | | | (ii) | State the role of iron in the Haber process. | | | | | | [1] | | (f) | Am | monia is a weak base. | | | | (i) | Explain the meaning of the term <i>base</i> . | | | | | | |[1] [Total: 13] | | 4 | Air is a | a mixture | of gases | |--|---|----------|-----------|----------| |--|---|----------|-----------|----------| | (a) | | te the percentage of clean dry air which is oxygen. Give your answer to the nearest whole
nber. | |-----|------|---| | | | % [1] | | (b) | Oxy | gen and nitrogen are useful gases that can be obtained from air. | | | (i) | Name the process used to separate oxygen and nitrogen from liquid air. | | | | [2] | | | (ii) | State the property of oxygen and nitrogen that allows these gases to be separated using this process. | | | | [1] | (c) Carbon dioxide, CO_2 , is a covalent molecule. Complete the diagram to show the electron arrangement in one molecule of ${\rm CO}_2$. Show only the outer electrons. [2] (d) The graph shows the concentration of carbon dioxide in the atmosphere over a 60-year period, measured in parts per million (ppm). The data shown in the graph is of global concern. | | Explain wny. | |-----|---| | | | | | | | | | | | | | | | | | [3] | | (e) | Name the process in the carbon cycle by which plants remove carbon dioxide from the atmosphere. | | | [1] | | | [Total: 10] | 5 (a) Dilute sulfuric acid is electrolysed using the apparatus shown in the diagram. | (i) | State what is meant by the term <i>electrolysis</i> . | | |-------|--|-----| | | | | | | | | | | | [2] | | (ii) | Explain why inert electrodes are used. | | | | | | | | | [1] | | (iii) | Name the products formed at each electrode. | | | | negative electrode | | | | positive electrode | | | | | [2] | | (iv) | Write an ionic half-equation for the reaction at the negative electrode. | | | | | [2] | | (b) | Sulfuric | acid | is | manufactured | using | the | Contact | process. | This | manufacture | involves | four | |-----|----------|------|----|--------------|-------|-----|---------|----------|------|-------------|----------|------| | | stages. | | | | | | | | | | | | | (i) | Stage 1 | involves the | combustion | of sulfur t | o form | sulfur | dioxide. | |-----|---------|--------------|------------|-------------|--------|--------|----------| |-----|---------|--------------|------------|-------------|--------|--------|----------| Write the chemical equation for **stage 1**. (ii) The equation for stage 2 is shown. $$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$ The reaction can reach equilibrium. Explain what is meant by the term equilibrium. |
 |
 |
 | | |------|------|------|-----| |
 | |
 | | | | | | | |
 |
 |
 | | | | | | | | | | | | |
 |
 |
 | | | | | | | | | | | [2] | | | | | | (iii) The energy level diagram for the forward reaction in **stage 2** is shown. | Explain what the diagram shows about the energy changes in the forward reaction. | | |--|----| | | | | | | | | | | | [2 | | (c) | In stage 3 sulfur trioxide, SO ₃ , is converted to oleum, H ₂ S ₂ O ₇ . | | |-----|--|-----| | | In stage 4 oleum reacts to form sulfuric acid, H ₂ SO ₄ . | | | | State what oleum reacts with in stage 4 . | | | | [| [1] | | (d) | A sample of sulfuric acid, H ₂ SO ₄ , has a concentration of 0.75 mol/dm ³ . | | | | Calculate the concentration of sulfuric acid in g/dm ³ . | | | | | | | | g/dm³ [| [2] | | | [Total: 1 | 5] | | (a) Eth | ane, propane and butane are members of the same homologous series. | |------------------|--| | (i) | Name this homologous series. | | | [1] | | (ii) | State two ways members of the same homologous series are similar. | | | 1 | | | 2[2] | | | [2] | | (b) On | e mole of ethane, C_2H_6 , contains 6.02×10^{23} molecules. | | Ca | Iculate how many molecules are in 15g of ethane. | | | | | | number of ethane molecules =[1] | | | | | (c) Pro | ppane reacts with chlorine. | | (i) | Write the formula of the product which does not contain carbon. | | | [1] | | (ii) | Draw the structure of an organic product formed. Show all of the atoms and all of the bonds. | | | | | | | | | | | | | | | | | | [1] | | (iii) | State the name of this type of reaction. | | | [1] | © UCLES 2020 0620/41/O/N/20 6 | (d) (i) | Aqueous bromine was added to a sample of | ethene. | |---------|--|---| | | Give the colour change seen. | | | | from | io [2] | | (ii) | Explain, in terms of bonding, why there is radded to ethane. | no colour change when aqueous bromine is | | | | [1] | | (e) The | ere are two structural isomers with the formula | C_4H_{10} . | | (i) | Draw the structures of both of these isomers, | showing all of the atoms and all of the bonds | | | | | | (ii) | Butane is formed when longer chain hydroca | [2] | | (") | Complete the chemical equation to show the | | cracking. $$C_6H_{14} \rightarrow C_4H_{10} + \dots$$ [1] | (f) | A co | ompound contains 85.7% carbon and 14.3% hydrogen by mass. | | |-----|------|---|-------------| | | (i) | Calculate the empirical formula of this compound. | | | | | Show your working. | [2] | | | (ii) | The molecular mass of the compound is 112. | | | | | Calculate the molecular formula of this compound. | | | | | | | | | | | [1] | | | | | [Total: 16] | | 7 | (a) | Etha | anol can be manufactured by two different methods. | |---|-----|------|--| | | | Met | thod 1: fermentation of a sugar, C ₆ H ₁₂ O ₆ | | | | | $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ | | | | Met | thod 2: reaction of ethene with steam | | | | | $C_2H_4 + H_2O \rightarrow C_2H_5OH$ | | | | (i) | Give one advantage of using fermentation compared with Method 2. | | | | | | | | | | [1] | | | | (ii) | Give one disadvantage of using fermentation compared with Method 2. | | | | | | | | | | [1] | | | (b) | | anol reacts with acidified potassium manganate(VII) to form water and a product that turns us red. | | | | (i) | State the name of the product that turns the litmus red. | | | | | [1] | | | | (ii) | State the type of reaction that ethanol undergoes when it reacts with acidified potassium manganate (VII). | | | | | [1] | | | (c) | Etha | anol reacts with methanoic acid to form an ester. | | | | (i) | Name the ester formed in this reaction. | | | | | [1] | (ii) Draw the structure of the ester formed. Show all of the atoms and all of the bonds. (d) The table shows the melting points of ethanol and sodium chloride. | substance | melting point/°C | | | | |-----------------|------------------|--|--|--| | ethanol | -114 | | | | | sodium chloride | 801 | | | | The difference in melting points is due to differences in attractive forces between particles in these substances. Name the type of attractive force in each substance, which is responsible for the difference in | melting points. | | |-----------------|-----| | ethanol | | | sodium chloride | | | | [2] | [Total: 8] ## **BLANK PAGE** ## **BLANK PAGE** ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge. The Periodic Table of Elements | | = | 2 J | pelium - | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 칫 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | |-------|---|-----|----------|---------------|--------------|------------------------------|----|------------|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | ₹ | | | 0 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | ğ | bromine
80 | 53 | П | iodine
127 | 85 | ¥ | astatine
- | | | | | | 5 | | | 80 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>e</u> | tellurium
128 | 84 | Ъ | polonium
– | 116 | | livermorium
- | | | > | | | 7 | z | nitrogen
14 | 15 | ۵ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | Ξ | bismuth
209 | | | | | | 2 | | | 9 | O | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Ър | lead
207 | 114 | ŀΙ | flerovium
- | | | = | | | 2 | М | boron
11 | 13 | <i>Y</i> 1 | aluminium
27 | 31 | Ga | gallium
70 | 49 | I | indium
115 | 81 | 11 | thallium
204 | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | ဦ | cadmium
112 | 80 | Η̈́ | mercury
201 | 112 | ပ် | copernicium – | | | | | | | | | | | | 29 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Au | gold
197 | 111 | Rg | roentgenium | | dn | | | | | | | | | | 28 | Z | nickel
59 | 46 | Pd | palladium
106 | 78 | £ | platinum
195 | 110 | Ds | darmstadtium
- | | Group | | | | | | | | | | 27 | ပိ | cobalt
59 | 45 | 뫈 | rhodium
103 | 77 | 'n | indium
192 | 109 | Μ̈́ | meitnerium
- | | | | - 1 | hydrogen | - | | | | | | 26 | Fe | iron
56 | 44 | Ru | ruthenium
101 | 9/ | Os | osmium
190 | 108 | Hs | hassium | | | | | | _ | | | | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium | | | | | | | loc | ISS | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≥ | tungsten
184 | 106 | Sg | seaborgium | | | | | Kev | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | g | niobium
93 | 73 | <u>a</u> | tantalum
181 | 105 | op
O | dubnium | | | | | | | ato | rela | | | | 22 | F | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | 짪 | rutherfordium
- | | | | | | | | | - | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | ഗ് | strontium
88 | 56 | Ba | barium
137 | 88 | Ra | radium | | | _ | | | က | := | lithium
7 | 7 | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | Rb | rubidium
85 | 22 | S | caesium
133 | 87 | ቷ | francium
- | | 71 | Ľ | lutetium | 175 | 103 | ۲ | lawrencium | I | |----|----|------------|-----|-----|-----------|-------------|-----| | 70 | Υp | ytterbium | 173 | 102 | % | nobelium | 1 | | 69 | Tm | thulium | 169 | 101 | Md | mendelevium | 1 | | 89 | Ē | erbinm | 167 | 100 | Fm | fermium | 1 | | 29 | 웃 | holmium | 165 | 66 | Es | einsteinium | I | | 99 | Dy | dysprosium | 163 | 86 | ర | californium | ſ | | 65 | Тр | terbium | 159 | 26 | 器 | berkelium | ſ | | 64 | gg | gadolinium | 157 | 96 | CB | curium | ſ | | 63 | En | europium | 152 | 92 | Am | americium | 1 | | 62 | Sm | samarium | 150 | 94 | Pu | plutonium | 1 | | 61 | Pm | promethium | ı | 93 | d
N | neptunium | 1 | | 09 | PZ | neodymium | 144 | 92 | \supset | uranium | 238 | | 59 | P | | | | | | | | 28 | Ce | cerium | 140 | 06 | ┖ | thorium | 232 | | 22 | Гa | lanthanum | 139 | 88 | Ac | actinium | ı | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).